Factoring the Greatest Common Factor from a Polynomial

Example:

$$
\begin{aligned}
& 24 a^{3} b^{2}-4 a^{2} b^{2}-16 a^{2} b^{4} \\
& =4 a^{2} b^{2}\left(6 a-1-4 b^{2}\right)
\end{aligned}
$$

1. Find the G.C.F of all terms.
G.C.F $=4 a^{2} b^{2}$
2. Factor the GCF from each term of the polynomial.

Factoring by Grouping

Example \#1	$3(x+y)+a(x+y)$	1. Both terms have a factor of $(x+y)$.
$=(x+y)(3+a)$	2. Factor out $(x+y)$ from each term.	

$$
\begin{array}{ll}
\text { Example \#2 } & a^{2} b+3 a^{2}+2 b+6 \\
& =\underline{a^{2} b+3 a^{2}}+\underline{2 b+6} \\
& =a^{2}(b+3)+2(b+3) \\
& =(b+3)\left(a^{2}+2\right)
\end{array}
$$

1. Group with parentheses the $1^{\text {st }}$ two terms and the last two terms.
2. Factor out the GCF from each group.

Notice: Both terms have a factor of $(b+3)$.
3. Factor out $(b+3)$ from each term.

Factoring a Trinomial of the Form $x^{2}+b x+c$ (Leading coefficient is 1)
Example \#1 $\quad x^{2}+12 x+20$

1. What 2 numbers: MULTIPLY to $=20$ and ADD to $=12$???
Factors of $20:\left\{\begin{aligned} 1 \cdot 20 & \rightarrow 1+20=21 \\ 2 \cdot 10 & \rightarrow 2+10=12 \\ 4 \cdot 5 & \rightarrow 4+5=9\end{aligned} \leftarrow 2\right.$ and $10!!!!$
2. List the factors of 20 and check the sums.
$=(x+2)(x+10)$
3. Factor.

Example \#2 $\quad x^{2}-15 x+56$

1. What 2 numbers: MULTIPLY to $=56$ and ADD to $=-15$???
Factors of 56: $\left\{\begin{array}{l}(-1)(-56) \rightarrow \\ (-2)(-28) \rightarrow \\ (-4)(-14) \rightarrow \\ (-7)(-8) \rightarrow(-7)+(-8)=-15 \quad \leftarrow-7 \text { and }-8!!!!\end{array}\right.$

$$
=(x-7)(x-8)
$$

2. List the factors of 56 and check the sums.
3. Factor.

Example \#3

$$
x^{2}+2 x-35
$$

Steps 1, 2, 3 from above.
$7 \cdot(-5)=-35$, and $7+(-5)=2 \quad \leftarrow$ The numbers are 7 and -5 .
$=(x+7)(x-5)$

Factoring a Trinomial of the Form $a x^{2}+b x+c, a \neq 1$ (Leading coefficient is not 1)
Method \#1: The "AC" method

Example: $\quad 2 x^{2}+7 x-4$

$$
(8)(-1)=-8, \text { and } 8+(-1)=7
$$

$$
=2 x^{2}-1 x+8 x-4
$$

$$
\begin{aligned}
& =\frac{2 x^{2}-1 x}{x(2 x-1)+}+\frac{8 x-4}{4(2 x-1)} \\
& =x
\end{aligned}
$$

$$
=(2 x-1)(x+4)
$$

1. Multiply 2 and $-4=-8$.
2. What 2 numbers: MULTIPLY to $=-8$ and ADD to $=7$???
The numbers are 8 and -1 .
3. Split up the $7 x$ term $\rightarrow-1 x+8 x$
4. Group the $1^{\text {st }} 2$ terms and the last 2 terms.
5. Factor out the GCF from each group.
6. Factor out the common factor of $(2 x-1)$.

Method \#2: Factoring by "Trial and Error"
Example:

$$
2 x^{2}+7 x-4 \quad \text { 1. Constant term is negative }
$$

2. List factors of 2 and -4 .

and so on...
$=(x+4)(2 x-1)$ is the correct factorization.

Special Factoring

Difference of 2 squares: $A^{2}-B^{2}=(A-B)(A+B)$
Example:
$x^{2}-49$

1. Let $A=x, B=7$
$=x^{2}-7^{2}$
$=(x-7)(x+7)$
2. Factor using the rule of difference of squares.

Perfect Square trinomial: $A^{2}+2 A B+B^{2}=(A+B)(A+B)=(A+B)^{2}$

$$
A^{2}-2 A B+B^{2}=(A-B)(A-B)=(A-B)^{2}
$$

Example:

$$
\begin{array}{ll}
x^{2}-10 x+25 & \text { 1. Let } A=x, B=5 \\
=x^{2}-2 \cdot 5 \cdot x+5^{2} & \\
=(x+5)(x+5)=(x+5)^{2} & \text { 2. Factor using the rule of perfect sq. trinomial. }
\end{array}
$$

